Table 5. Interatomic distances for nearest neighbors

			· · · · · · · · · · · · · · · · · · ·
Atomic type	Nearest neighbors Num- ber Type	Distance*	Coordination number
I	4 II 12 IV	2·811 Å 2·754	16
II	1 I 3 III 3 III 6 IV 3 IV	2·811 2·572 2·930 2·708 2·895	16
ш	1 II 1 III 2 III 4 III 1 IV 2 IV 2 IV	2·572 2·930 2·622 2·661 2·349 2·524 2·682	13
IV	1 I 2 II 1 II 1 III 2 III 2 III 1 IV 2 IV	2·754 2·708 2·895 2·349 2·524 2·682 2·258 2·424	12
	* All errors are	+0.001 Å.	

ht expect differences to exist

One might expect differences to exist in the true scattering factors of the four different types of manganese atoms, since the coordination number and symmetry of their sites are different. Although such effects were looked for in a second data set which consisted of all dependent reflections in the region $\lambda^{-1}\sin\theta < 0.3 \text{ Å}^{-1}$, no definite conclusions could be reached. This is not surprising since these inner data are most sensitive to the model for extinction and are affected more by the problems of the absorption correction.

The support and advice of Professors Jules A. Marcus and Lyle H. Schwartz in this work is gratefully acknowledged.

References

- Bradley, A. J. & Thewlis, J. (1927). Proc. Roy. Soc. A 115, 456.
- CORFIELD, P. W. R., DOEDENS, R. J. & IBERS, J. A. (1967). Inorg. Chem. 6, 197.
- CROMER, D. T. (1965). Acta Cryst. 18, 17.
- FREEMAN, A. J. & WATSON, R. E. (1961). Acta Cryst. 14, 231.
- GAZZARA, C. P., MIDDLETON, R. M. & WEISS, J. J. (1964). Phys. Letters, 10, 257.
- GAZZARA, C. P., MIDDLETON, R. M., WEISS, R. J. & HALL, E. O. (1967). Acta Cryst. 22, 859.
- IBERS, J. A. & HAMILTON, W. C. (1964). Acta Cryst. 17, 781.
- KASPER, J. S. & ROBERTS, B. W. (1956). Phys. Rev. 101, 537.
- KIMBALL, C. W., PHILLIPS, W. C., NEVITT, M. C. & PRES-TON, R. S. (1966). Phys. Rev. 146, 375.
- KUNITOMI, N., YAMADA, T., NAKAI, Y. & FUJII, Y. (1969). J. Appl. Phys. 40, 1265.
- OBERTEUFFER, J. A. (1969). Ph. D. Thesis, Northwestern University.
- OBERTEUFFER, J. A., MARCUS, J. A., SCHWARTZ, L. H. & FELCHER, G. P. (1968). *Phys. Letters*, **28**A, 267.
- OBERTEUFFER, J. A., MARCUS, J. A., SCHWARTZ, L. H. & FELCHER, G. P. (1970) *Phys. Rev.* 2B, 670.
- PRESTON, R. S. (1928). Phil. Mag. 5, 1198.
- SHULL, C. G. & WILKINSON, M. K. (1953). *Rev. Mod. Phys.* 25, 100.
- WATSON, R. E. & FREEMAN, A. S. (1961). Acta Cryst. 14, 27.
- WESTGREN, A. & PHRAGMÉN, G. (1925). Z. Phys. 33, 777.
- ZACHARIASEN, W. H. (1968). Acta Cryst. A24, 212.

Acta Cryst. (1970). B26, 1504

The Crystal and Molecular Structure of a,a'-Diselenobisformamidinium Dichloride

By Angiola Chiesi Villa, Mario Nardelli & Maria Eleonora Vidoni Tani

Istituto di Chimica Generale, Università degli Studi, Parma, Italy

(Recieved 24 September 1969)

The crystal structure of α, α' -diselenobisformamidinium dichloride, [SeC(NH₂)₂]₂Cl₂, has been determined by a three-dimensional X-ray analysis (Cu K α). The unit cell of dimensions $a=12\cdot82(2)$, $b=6\cdot01(1)$, $c=12\cdot22(1)$ Å, $\beta=108\cdot1(0\cdot1)^{\circ}$ contains 4 stoichiometric units (space group C2/c). The organic cation is formed by two selenourea groups nearly perpendicular to the Se-Se= $2\cdot380(6)$ Å bond, the dihedral angle CSeSeⁱASeSeⁱCⁱ being 89.5°; bond distances in those groups are: Se-C= $1\cdot94(1)$, C-N= $1\cdot32(2)$ and $1\cdot30(2)$ Å.All the hydrogen atoms are involved in N···Cl hydrogen bonds. The molecular structure of the cation is compared with that of the corresponding thio-derivative.

Introduction

In an attempt to prepare silver(I)-selenourea complexes, a few crystals of α, α' -diselenobisformamidinium dichloride were obtained. They were probably formed by oxidation of selenourea by the Ag⁺ ion or by atmospheric oxygen. As the crystals were too few for a conventional chemical analysis, their nature was determined by an X-ray structural study, started by assuming the product to be a silver chloride-selenourea complex. Further work showed that the compound was α, α' -diselenobisformamidinium dichloride, and so it appeared possible to correlate the structure with those of α, α' -dithiobisformamidinium dibromide and diiodide studied by Foss, Johnsen & Tvedten (1958) and to give more structural information on the selenium derivatives. A short account of this research has already been presented (Chiesi, Grossoni, Nardelli & Vidoni, 1969).

Experimental

A few stocky monoclinic crystals of the compound $[SeC(NH_2)_2]_2Cl_2$ were obtained from an aqueous solution containing AgCl and selenourea by standing in a desiccator for a few days. The forms observed were: $\{\overline{101}\}, \{001\}, \{110\}, \{\overline{111}\}, \{001\}$ (in decreasing order of size). The crystals are pleochroic: looking down[001] they are yellow and colourless when the electric vector is parallel to x^* and y respectively.

Crystal data from rotation and Weissenberg photographs (Ni filtered Cu radiation $\lambda = 1.5418$ Å) are as follows: [SeC(NH₂)₂]₂Cl₂, M = 316.9, a = 12.82 (2), b = 6.01 (1), c = 12.22 (1) Å, $\beta = 108.1$ (0.1)°, Z = 4, V = 895.6Å³, $D_c = 2.35$ g.cm⁻³, $\mu = 167$ cm⁻¹ (Cu K α), F(000) = 600; space groups: Cc orC2/c. The latter space group was found from the structural analysis to be the correct one in agreement with the absence of piezoelectric effects.

Three-dimensional intensity data were collected in the usual way on multiple-film Weissenberg photographs around [100] and [010] using integration and equi-inclination techniques (Cu K α radiation). 856 independent reflexions were measured photometrically out of 1005 possible ones. After correction for Lorentz and polarization factors and for absorption (the samples were considered to be spherical with $\bar{r}=0.01$ cm as they were made roughly round by grinding), the intensities from different films were correlated following Rollett & Sparks (1960), and a trial absolute scale was then established for all the three-dimensional data by Wilson's (1942) method, assuming the formula AgCl SeC(NH₂)₂.

Structure analysis and refinement

In the first stages of the analysis the formula given above was assumed and on this basis the three-dimensional Patterson synthesis could be interpreted only with the Cc space group. A model for the stucture was obtained which could be refined by Fourier methods down to R=27.4%. At this point it was quite clear that the structure was much too open and there were residual peaks indicating the presence of a twofold axis which doubled the selenourea molecules. The introduction of atoms in these residual peaks greatly improved the R value (21.4\%) showing that the formula assumed originally was incorrect.

					J							;
	$x/a(\sigma)$	$y/b(\sigma)$	$z/c(\sigma)$	$B_{11}(\sigma)$	$B_{22}(\sigma)$	$B_{33}(\sigma)$	$B_{12}(\sigma)$	$B_{13}(\sigma)$	$B_{23}(\sigma)$	(x)	r(y)	r(z)
Se	976 (1)	1303 (2)	2799 (1)	47 (3)	21 (0)	29 (2)	-3 (2)	8 (4)	1 (2)	ę	8	7
10	1447 (4)	- 5621 (5)	6072 (4)	47 (8)	27 (1)	33 (6)	-3 (5)	11 (9)	2 (4)	13	7	6
Ēz	1181 (14)	-3132 (18)	3546 (12)	48 (29)	24 (5)	34 (22)	0 (18)	10 (34)	2 (16)	140	7	41
	1189 (14)	-613(22)	4963 (13)	49 (30)	32 (8)	27 (20)	4 (22)	8 (33)	3 (18)	8	27	∞
) C	1149 (15)	-1080 (21)	3910 (14)	36 (25)	18 (5)	34 (25)	0 (19)	7 (34)	7 (18)	17	21	7
† Th€	anisotropic temp	perature factor is:	$\exp \left[-\frac{1}{4}(B_{11}h^2a^*)\right]$	$^{2} + B_{22}k^{2}b^{*2} + I$	$B_{33}l^2c^{*2} + 2B_{12}$	$hka^*b^* + 2B_{13}$	$hla^{*}c^{*} + 2B_{23}h$	(lb^*c^*)].				

Chemical considerations were then applied to interpret all the observed peaks and the chemical composition of the compound was obtained in a straightforward manner assuming the C2/c space group. From that point on the refinement was carried out by means of isotropic (till $R=17\cdot3\%$) and anisotropic cycles of Booth's differential synthesis and their regular convergence supported the correctness of the chemical interpretation. Further evidence was obtained by comparing the X-ray powder diffraction pattern of the previous crystals with that given by the oxidation product of selenourea with H_2O_2 in cooled HCl–EtOH.

After the refinement operations the final residual error indices (*R* for observed reflexions only, *R'* assuming $F_o = \frac{1}{2}F_{\min}$ when $F_c \ge F_{\min}$ for unobserved reflexions only, multiplicities not considered) were R =9.0 and R' = 9.5%. The introduction of hydrogen atoms in positions calculated to make N-H=1.03 Å with trigonal hybridization for nitrogen atoms, did not change the final *R* indices significantly.

In Table 1 the final coordinates are given with estimated standard deviations (Cruickshank, 1949, 1956; the calculations were performed with computer programs taking into account the atomic anisotropy), together with the final anisotropic thermal parameters and the ratios $r(x) = |\sigma(x)/\epsilon(x)|$ between e.s.d.'s and coordinate shifts. No conclusions can be drawn from the values of thermal parameters as they are probably affected by absorption and scaling effects. The observed and calculated values of the electron density and of the second derivatives at the atomic peaks, with e.s.d.'s. are compared in Table 2. The F_c values listed in Table 3 are calculated with the final parameters of Table 1 and include the contribution of hydrogen atoms, the scattering factors used being those of Thomas & Umeda (1957) for Se, those of Berghuis, Haanappel, Potters, Loopstra, MacGillavry & Veenendaal (1955) for Cl, N, C and those of McWeeny (1951) for H; the 'less than' values for F_o are calculated from the minimum observed intensity taken as $I_{\min}-1$.

The standard deviations quoted in the next section are calculated from the formulae of Ahmed & Cruickshank (1953) for bond lengths and those of Darlow (1960) for angles, the effects of errors in cell parameters being accounted for following Darlow & Cochran (1961).

The calculations were performed with the computer programs of Nardelli, Musatti, Domiano & Andreetti (1964, 1965) on the Elea 6001/S computer of the Centro di Calcolo Elettronico della Università di Parma.

Discussion

The organic cation is formed by two selenourea groups related by a twofold axis perpendicular to the Se-Se bond as shown in Fig. 1(*a*). The structures of the similar sulphur derivatives studied by Foss, Johnsen & Tvedten (1958) are also illustrated in the same Figure. The same comparison is made for distances and angles in Table 4.

The Se–Se distance is not statistically different from that found recently in trigonal selenium (2.373(5) Å)

Fig. 1. Clinographic projections of the structures of the cations: (a) $^{+}(NH_2)_2CSeSeC(NH_2)_2^{+}$ (present paper), $^{+}(b) ^{+}(NH_2)_2CSSC(NH_2)_2^{+}$ in the bromide derivative (Foss, Johnsen & Tvedten, 1958), (c) $^{+}(NH_2)_2CSSC(NH_2)_2^{+}$ in the iodide [derivative (Foss, Johnsen & Tvedten, 1958),

by Cherin & Unger (1967) and can be reasonably assumed to represent a Se-Se single-bond distance. Assuming this value and the $C(sp^2)-C(sp^2)=1.483$ Å single-bond distance given by Dewar & Schmeising (1960), a single bond Se(?)- $C(sp^2)=1.93$ Å distance is calculated which is in good agreement with that found [1.94(1) Å] in the present case. The C-N distances in the Se cation are not significantly different and are consistent with a π delocalization along the N-C-N system. The general rule, by which the bond angle in X decreases from S to Se, is observed.

The two selenourea parts of the cation are planar

Table 3. Observed and calculated structure factors

A minus sign for F_0 means 'less than'.

Table 3 (cont.)

																-												
ь	k [.]	1 i	.0F_	10F <u>c</u>	h	k 1	10F <u>0</u>	10F	h	k 1	10F_	10F_	h	k	1 1		10F ⊆	h	k 1	105 <u>0</u>	10F	h	k 1	10F	10F	h	k 1	10F 10F
9	3	1	286	-225	9	3 8	156	-176	10	2 4	152	186	11	1	ī	318	322	11	3.9	103	-89	12	4 7	56-	12	13	1 10	235
3	5.	1 '	376	465	9.	38	· 390	364	10	4 4	276 -	-275	11	3	1	449	-414	11	1 10	69	71	12	0 8	412	405	13	3 10	156 184
á	ś	î	81_	-27	2	2 0	04- co		10	4 4	260 .	-255	11	3	1	209	211	11	3 <u>10</u>	93	88	12	2 8	100	65	13	1 11	189 -196
9	ĩ	2	112	-89	å	1 5	353	-00	10	2 4	36-1	- 36	11	ş	1	97	88	11	1 11	60	45	12	4 8	218	-259	13	1 12	172 188
9	1	2.	426	-434	é	ŝ	117	-303	10	5 ÷	247 -	270	11	2	1	210	-249	11	3 11	48-	7	12	2 9	253	312	14	0 0	124 -116
9	3	2	595	\$33	9	s ģ	348	345	10	2 5	46	3/0	11	1	÷	233	-262		1 12	57	-53	12	4 9	97	105	14	20	70- 71
9	3	2	105	82	9	1 10	4 39	389	10	4 5	102	111	11	-	2	291	-202	11	3 14	93	85	12	0 10	384 -	-355	14	2 1	140 133
9	5	2 :	152	128	9	3 10	404	- 374	10	6 5	109 .	-146	11	ž	5	395	382	11	1 12	27	-23	12	2 10	2 93	-97	14	2 1	7761
9	5	2 :	205	207	9	5 10	158	-162	10	0 6	123 .	-123	11	š	2	56	49	12	0 0	135-	-14	12	2 11	85 -	-100	14		140 147
9	1	3	526	488	9	1 11	410	385	10	06	105-	22	11	ŝ	2	182	207	12	2 0	109-	-50	12	$\frac{12}{2}$	01-	-40	14	0 2	162 177
9	1	3 3	219	-219	9	3 11	291	271	10	2 6	108	121	11	1	3	129	162	12	4 0	153	-122	12	2 11	36-	23	14	2 2	304
ž	3	3	258	220	9	1 12	477	-430	10	2 6	103-	6	11	1	3	249	-260	12	2 1	104-	-54	13	1 0	218	179	14	2 4	113 166
ž	5	3 .	260	-245	9	3 12	278	243	10	4 <u>6</u>	28-	181	11	3	3	59-	8	12	2 1	243	319	13	3 0	55-	- 34	14		113 -74
~	5		410	-422	9	1 13	331	-289	10	6 6	21-	-12	11	3	3	159	-146	12	4 1	63	71	13	1 1	109-	28	14	2 4	8587
ő	ĩ.		482	480	2	3 13	303	-280	10	2 7	60-	13	11	5	3	301	341	12	4 1	60-	49	13	1 1	122-	17	14	2 5	85- 53
é	î i	2 1	161	-157	10	0 0	402	100	10	2 4	126	139	11	1	4	67	-50	12	0 <u>2</u>	129	128	13	3 1	70	47	14	06	243 -245
9	3	4	395	-371	10	2 0	273	205	10	4 /	81	/5	11	1	4	190	190	12	0 2	645	-670	13	31	89	-97	14	26	8426
9	3	4	85	-56	10	4 õ	537	-481	10		225	224	#	3	4	175	-166	12	2 2	96	75	13	1 2	. 99-	- 32	14	2 7	174 -233
9	5	4 1	141 .	-146	10	2 1	608	-561	10	2 8	40-	-46	11	5	#	300	- 364	12	2 2	116	-129	13	1 2	125-	- 30	14	08	206 202
9	5	4	94	83	10	2 1	347	370	10	2 8	102-	-76	11	ĩ	ŝ	80	-102	12	# ÷	43-	265	13	3 2	122 -	120	14	28	73- 5
9	1	5 5	505 -	-510	10	4 1	75-	61	10	4 8	69-	-26	11	ĩ	ŝ	371	405	12	2 2	213	265	13	3 2	97	109	14	2 _9	123 169
.9	1	5 1	133 .	-119	10	4 <u>ī</u>	306	- 330	10	2 9	214 -	204	11	3	5	77	62	12	2 1	317	-418	12	1 3	109 -	107	14	10	108 -96
9	3	5 4	442 .	-412	10	61	306	327	10	4 9	63-	- 22	11	3	5	361	347	12	4 1	64-	12	13	2 3	29	207	14 .	2 10	55 57
9	3	5	330	-317	10	0 <u>2</u>	549	-572	10	0 10	83-	39	11	5	5	197	-211	12	0 4	97-	15	13	1 1	66	-75	15	1 1	100 -103
ž	2	2	153	159	10	0 2	673	-714	10	2 10	96	85-	11	1	6	66-	-24	12	0 4	396	395	13	1 4	105	_99	15	1 2	80 55
č		· ·	157 .	-155	10	2 2	102-	-55	10	4 10	135 -	129	11	1	6	455	-499	12	24	73-	18	13	1 4	233	273	15	1 1	85- 60
ć	1 1		434 .	-459	10	2 2	106	113	10	2 11	85-	22	11	3	<u>6</u>	31-	-17	12	24	117	-134	13	3 4	104 -	108	15	3 3	29- 43
á.	2 1	5 7	203	272	10	2 4	3/1	339	10	4 11	178 -	181	11	3	<u>6</u>	181	178	12	44	241	-306	13	1 5	235	202	15	1 4	8854
á	3 1	5	91_	-12	10	÷ ÷	432	4/1	10	2 14	214 -	181	11	5	6	153	163	12	2 <u>5</u>	58-	35	13	3 5	212	237	15	34	74 66
9	s i	5 1	117	-97	10	2 2	570	570	10	2 12	20	64	11	1	7	51-	- 38	12	2 5	250	321	13	1 6	206 -	207	15	1 5	88 -98
9	1	7 2	235	234	10	2 1	700	-745	10	6 13	2/8 -	260	11	1	4	376	- 378	12	4 5	168	-202	13	3 6	115	138	15	16	103 121
9	1	7 2	219	212	10	4 3	124	120	10	2 14	326	200	11	2	4	364	-352	12	0 6	59-	19	13	1 7	178 -	191	15	36	29- 18
9	3	/ 1	177	181	10	4 3	142	-137	11	1 0	530	481	11	-	<u>'</u>	44-	38	12	0 6	287	-283	13	3 7	89	-94	15 :	ιī	80- 41
9	3	1	125	113	10	6 3	121	148	11	3 0	325 -	264	11	-	8	180	172	12	4 6	32-	-46	13	1 8	114-	34	15	ι <u>δ</u>	72- 30
9	5 ु	72	265 -	-239	10	0 4	454	525	11	5 0	182 -	168	11	š	ă ·	38	-1/2	12	ć <u>è</u>	114-	124	13	3 8	216 -	252	15	1 2	91 94
9	1 8	<u> </u>	147	148	10	0 4	688	718	11	1 1	501 -	472	11	ĩ	ă	98_	24	12	7	250	4/9	13	1 2	206	416	16 0	2 4	81 -100
9	1 5	2	64	66	10	2 1	100	100						•			-4		- /	د بدر	-402	د د	J 9	111	101	15 () 6	64 73

and nearly parallel (the dihedral angle between them being 8.4°). The distances of the atoms from the leastsquares weighted plane 0.9674X' + 0.0731Y + 0.2425Z'= 1.0284(X', Y', Z') are coordinates in Å referred to the orthogonal axes x, y, z^*) are: 0.000 for Se, -0.005 for

N(1) and N(2), +0.015 Å for C. The chlorine atom lies in this plane.

The most significant difference between the cations of the selenium- and sulphur-derivative concerns the orientation of the CNN planes with respect to the

Fig. 2. Section of the structure on a plane parallel to (100) at $x = \frac{1}{8}$.

Se-Se or S-S bond; in the Se-compound these planes are nearly perpendicular to the Se-Se bond, while in the S compound they are nearly parellel.

This difference in conformation does not seem to arise from packing requirements. Thus in the two sulphur compounds, in which the environments of the cations are quite different, these units are very similar apart from some distortion probably caused by steric requirements.

The two parts of the cations are related by a twofold axis, so the cations can assume two enantiomorphous configurations; both are present in all these structures, one related to the other by a glide plane.

Packing is essentially determined by the hydrogen bonds which the NH_2 groups form with the chlorine atom: the chlorine atom is involved in four hydrogen bonds with three different selenourea groups:

$\begin{array}{l} Cl \cdots N(1) &= 3.35 \ (1) \ \text{\AA} \\ Cl \cdots N(1^{ii}) &= 3.23 \ (2) \end{array}$	$ClHN(1) = 146.5^{\circ}$ $ClHN(1^{ii}) = 167.0$
$\begin{array}{l} Cl \cdots N(2) = 3.28 \ (1) \\ Cl \cdots N(2^{i1i}) = 3.27 \ (1) \end{array}$	ClHN(2) = 151.9 $ClHN(2^{iii}) = 166.7$.
ii $x, \overline{y} - 1, z + \frac{1}{2}$ iii $x, y - 1, z$.	

This hydrogen bond system lies in a plane nearly parallel to (100) which is shown in Fig. 2. The structure is therefore formed by double layers of selenourea groups and chlorine atoms joined together by the Se-Se bonds. These layers are packed along x^* in such a way that each chlorine atom is nearly collinear with the Se-Se bond (the angle Cl...Se-Se is 169.4°). In Fig. 3 these layers are projected on (010).

It is interesting to observe that the direction along which the electric vector vibrates when, looking along [001], the crystals appear yellow, is parallel to the $Cl \cdots Se-Se \cdots Cl$ line and therefore perpendicular to the selenourea planes. The distance $Se \cdots Cl$ on that line is particularly short (3.19 Å) considering the van der Waals radii generally assumed ($r_{Cl}=1.80$ and $r_{Se}=1.73$ Å). The other van der Waals contacts (less than 3.5 Å) are as follows:

Se-Cⁱ = 3·21 (2) Å N(1)-N(1ⁱ) = 3.30 (2) Å
Se-N(1ⁱⁱⁱ) = 3.46 (1) N(1)-N(2^{iv}) = 3.38 (3)
Cl-C^{iv} = 3.24 (2)
i
$$\bar{x}, y, \frac{1}{2} - z$$

iv $\frac{1}{2} - x, -\frac{1}{2} - y, 1 - z$

Unlike thioformamidinium dibromide and diiodide which both crystallize as hydrates, the selenium com-

Table 4. Comparison of the structural parameters for the cations $+(NH_2)_2CX-XC(NH_2)_2^+$, (X = Se,S)

	Cl(NH ₂) ₂ CSe-SeC(NH ₂) ₂ Cl (present paper)	$\frac{Br(NH_2)_2CS-SC(NH_2)_2Br}{Foss \ et \ al. \ (1958)}$	I(NH ₂) ₂ CS-SC(NH ₂) ₂ I Foss <i>et al.</i> (1958)
X–X ⁱ	2·380 (6) Å	2·044 (10) Å	2·044 (20) Å
X-C	1.94 (1)	1.78 (3)	1.75 (4)
C-N(1)	1.32 (2)	1.33 (3)	1.33 (4)
C-N(2)	1.30 (2)	1.33 (3)	1.36 (4)
X ⁱ XC	95·5 (6)°	104·0°	98·9°
XCN(1)	117·7 (1·2)°	121.2	122.9
XCN(2)	119.6 (1.0)	118.3	113.1
N(1)CN(2)	122.7 (1.4)	119.0	116.3
$(X^iX) \wedge (XCNN)$	5·1 °	88.8	76.3
$(X^{i}XC) \wedge (XX^{i}C^{i})$	89.5	89.2	104.8

Fig. 3. Projection of the structure on (010),

pound is anhydrous. There is no room for water molecules in its crystal structure.

This work was carried out with the financial support of the Consiglio Nazionale delle Ricerche (Roma).

References

- AHMED, F. R. & CRUICKSHANK, D. W. J. (1953). Acta Cryst. 6, 385.
- BERGHUIS, I., HAANAPPEL, IJ. M., POTTERS, M., LOOPSTRA, B. O., MACGILLAVRY, C. H. & VEENENDAAL, A. L. (1955). Acta Cryst. 8, 478.

CHERIN, P. & UNGER, P. (1967). Inorg. Chem. 6 (8), 1589.

CHIESI, A., GROSSONI, G., NARDELLI, M. & VIDONI, M. E. (1969). Chem. Comm. p. 404.

- CRUICKSHANK, D. W. J. (1949). Acta Cryst. 2, 65.
- CRUICKSHANK, D. W. J. (1956). Acta Cryst. 9, 748.
- DARLOW, S. F. (1960). Acta Cryst. 13, 683.
- DARLOW, S. F. & COCHRAN, W. (1961). Acta Cryst. 14, 1250.
- DEWAR, M. J. S. & SCHMEISING, H. N. (1960). Tetrahedron, 11, 96.
- Foss, O., JOHNSEN, J. & TVEDTEN, O. (1958). Acta Chem. Scand. 12, 1782.
- MCWEENY, R. (1951). Acta Cryst. 4, 513.
- NARDELLI, M., MUSATTI, A., DOMIANO, P. & ANDREETTI, G. (1964). *Ric. Sci.* 34, II-A, 711.
- NARDELLI, M., MUSATTI, A., DOMIANO, P. & ANDREETTI, G. (1965). *Ric. Sci.* 35, II-A, 469, 477, 807.
- ROLLETT, J. S. & SPARKS, R. A. (1960). Acta Cryst. 13, 273.
- THOMAS, L. H. & UMEDA, K. (1957). J. Chem. Phys. 26, 293.
- WILSON, A. J. C. (1942). Nature, Lond. 150, 152.

Acta Cryst. (1970). B26, 1510

Structure Cristalline de Composés Antituberculeux. III. Structure Cristalline de la Propyl-2-thiocarbamoyl-4-pyridine

PAR J. C. COLLETER, M. GADRET ET M. GOURSOLLE

Laboratoire de Cristallographie de la Faculté de Médecine et de Pharmacie et Laboratoire de Cristallographie de la Faculté des Sciences de Bordeaux, Bordeaux, Gironde, France

(Recu le 22 septembre 1969)

2-Propyl-4-thiocarbamoylpyridine (C₉N₂H₁₂S) crystallizes in the monoclinic system, space group $P2_1/c$, with cell dimensions $a=7.84\pm0.02$, $b=17.11\pm0.02$, $c=7.44\pm0.02$ Å, $\beta=103^{\circ}17'\pm50'$ and 4 molecules per cell. The refinement was carried out by least-squares calculations including anisotropic temperature factors. The final *R* value is 0.088. The structure is made up of chains of molecules parallel to the [201] direction; the molecules are linked together by hydrogen bonds.

Introduction

C'est en poursuivant toujours le même but, à savoir, la recherche d'analogies entre la structure et l'activité des molécules, que nous avons continué la détermination des structures cristallines dans la série de l'éthionamide (Colleter & Gadret ,1967, 1968 a, b).

La présente note rapporte celle du dérivé propylé en 2: la propyl-2-thiocarbamoyl-4-pyridine. Ce composé est particulièrement intéressant car il s'agit d'un des produits les plus actifs de cette série: il est d'ailleurs utilisé en thérapeutique (Colleter & Gadret, 1967).

Partie expérimentale

La propyl-2-thiocarbamoyl-4-pyridine se présente sous forme d'une poudre cristalline jaune d'or peu soluble dans l'eau, soluble dans l'alcool, l'acétone et dans la plupart des solvants organiques apolaires.

Les cristaux utilisés ont été obtenus à partir d'une solution acétonique saturée. Ils ont la forme de petits prismes allongés suivant la direction c, de dimensions approximatives 3 à 5 × 0.4 à 0.6 mm. Les diagrammes de Bragg et de De Jong, la rotation du cristal s'effectuant autour de l'axe d'allongement \mathbf{c} , ont été obtenus avec le rayonnement $K\alpha$ du cuivre.

Données cristallographiques

Système monoclinique; groupe spatial $P2_1/c$.

$$a = 7 \cdot 84 \pm 0.02 \text{ Å} b = 17 \cdot 11 \pm 0.02 \text{ Å} c = 7 \cdot 44 \pm 0.02 \text{ Å} \beta = 103^{\circ} 17' \pm 50'$$

volume de la maille: v=970.939 Å³ nombre de molécules par maille: z=4

Mesure des intensités et calcul des F_o (hkl)

Ces mesures ont été faites avec un microdensitomètre Nonius sur des clichés de De Jong obtenus pour différents temps de pose.

Nous avons ainsi noté, sur les sept plans réciproques 1278 réflexions dont 979 seulement sont mesurables.

Les transmissions fournies par l'appareil, pour chaque tache, sont ensuite transcrites sur carte pour per-